Home

tánc becsületes Gyümölcs zöldségfélék farmer s.r 2006 cell metab 4 263 273 Idős ember tanács Összeállít

HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents  diet-induced obesity and insulin resistance | Scientific Reports
HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance | Scientific Reports

Cell fate determining molecular switches and signaling pathways in  Pax7-expressing somitic mesoderm | Cell Discovery
Cell fate determining molecular switches and signaling pathways in Pax7-expressing somitic mesoderm | Cell Discovery

The KLF2 Transcription Factor Does Not Affect the Formation of  Preadipocytes but Inhibits Their Differentiation into Adipocytes |  Biochemistry
The KLF2 Transcription Factor Does Not Affect the Formation of Preadipocytes but Inhibits Their Differentiation into Adipocytes | Biochemistry

Single cell full-length transcriptome of human subcutaneous adipose tissue  reveals unique and heterogeneous cell populations - ScienceDirect
Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations - ScienceDirect

Human fetal mesenchymal stem cells differentiate into brown and white  adipocytes: a role for ERRα in human UCP1 expression | Cell Research
Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression | Cell Research

Distinct regulatory mechanisms governing embryonic versus adult adipocyte  maturation | Nature Cell Biology
Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation | Nature Cell Biology

Biomedicines | Free Full-Text | Autophagy, Mesenchymal Stem Cell  Differentiation, and Secretion
Biomedicines | Free Full-Text | Autophagy, Mesenchymal Stem Cell Differentiation, and Secretion

Frontiers | Fate of Adipose Progenitor Cells in Obesity-Related Chronic  Inflammation
Frontiers | Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation

Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk  between Adipocytes and Dendritic Cell Subsets - ScienceDirect
Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets - ScienceDirect

Single-cell transcriptional networks in differentiating preadipocytes  suggest drivers associated with tissue heterogeneity | Nature Communications
Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity | Nature Communications

Cells | Free Full-Text | The Intricate Role of p53 in Adipocyte  Differentiation and Function
Cells | Free Full-Text | The Intricate Role of p53 in Adipocyte Differentiation and Function

Identification of an adipose tissue-resident pro-preadipocyte population -  ScienceDirect
Identification of an adipose tissue-resident pro-preadipocyte population - ScienceDirect

Transcriptional networks and chromatin remodeling controlling adipogenesis:  Trends in Endocrinology & Metabolism
Transcriptional networks and chromatin remodeling controlling adipogenesis: Trends in Endocrinology & Metabolism

IJMS | Free Full-Text | Epigenomic Control of Thermogenic Adipocyte  Differentiation and Function
IJMS | Free Full-Text | Epigenomic Control of Thermogenic Adipocyte Differentiation and Function

Foods | Free Full-Text | Black Wheat Extracts (Arriheuk) Regulate  Adipogenesis and Lipolysis via Adenosine Monophosphate (AMP) Activated  Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Signaling Pathways
Foods | Free Full-Text | Black Wheat Extracts (Arriheuk) Regulate Adipogenesis and Lipolysis via Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Signaling Pathways

Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production,  and Glucose Uptake via Its PPARγ Ligand Activity | ACS Omega
Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production, and Glucose Uptake via Its PPARγ Ligand Activity | ACS Omega

Genes and miRNAs involved in the inhibition of adipogenesis by... |  Download Scientific Diagram
Genes and miRNAs involved in the inhibition of adipogenesis by... | Download Scientific Diagram

Frontiers | Weighing in on Adipogenesis
Frontiers | Weighing in on Adipogenesis

Molecules | Free Full-Text | Derhamnosylmaysin Inhibits Adipogenesis via  Inhibiting Expression of PPARγ and C/EBPα in 3T3-L1 Cells
Molecules | Free Full-Text | Derhamnosylmaysin Inhibits Adipogenesis via Inhibiting Expression of PPARγ and C/EBPα in 3T3-L1 Cells

Adipogenesis and metabolic health | Nature Reviews Molecular Cell Biology
Adipogenesis and metabolic health | Nature Reviews Molecular Cell Biology

Untapped Pharmaceutical Potential of 4,5,4′-Trihydroxy-3,3′-dimethoxybibenzyl  for Regulating Obesity: A Cell-Based Study with a Focus on Terminal  Differentiation in Adipogenesis | Journal of Natural Products
Untapped Pharmaceutical Potential of 4,5,4′-Trihydroxy-3,3′-dimethoxybibenzyl for Regulating Obesity: A Cell-Based Study with a Focus on Terminal Differentiation in Adipogenesis | Journal of Natural Products

Mdm2 controls CREB-dependent transactivation and initiation of adipocyte  differentiation | Cell Death & Differentiation
Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation | Cell Death & Differentiation

Srebf1a is a key regulator of transcriptional control for adipogenesis |  Scientific Reports
Srebf1a is a key regulator of transcriptional control for adipogenesis | Scientific Reports

Frontiers | miR-214-5p Regulating Differentiation of Intramuscular  Preadipocytes in Goats via Targeting KLF12
Frontiers | miR-214-5p Regulating Differentiation of Intramuscular Preadipocytes in Goats via Targeting KLF12

Frontiers | Lysozyme Gene Expression in 3T3-L1 Cells Sustains Expression of  Adipogenic Genes and Adipocyte Differentiation
Frontiers | Lysozyme Gene Expression in 3T3-L1 Cells Sustains Expression of Adipogenic Genes and Adipocyte Differentiation

Antioxidants | Free Full-Text | Extract of Isatidis Radix Inhibits Lipid  Accumulation in In Vitro and In Vivo by Regulating Oxidative Stress
Antioxidants | Free Full-Text | Extract of Isatidis Radix Inhibits Lipid Accumulation in In Vitro and In Vivo by Regulating Oxidative Stress